

1. Outrigger

A member projecting from a curtain wall product to hold and support louvers and fascia elements.

2. Louver

Horizontal extruded member that acts as a canopy and controls the radiation of light through glazing elements.

3. Fascia

Outermost louver element that trims the face of the ThermaShade assembly.

4. Outrigger Connector

"I" shaped extrusion used to align adjacent outriggers and prevent separation under loading conditions.

5. Flat Outrigger Cap

Finished part used to cap the external gap created by two square extruded outriggers.
6. Spacer

Unfinished part used at anchor clip to ensure proper spacing between ThermaShade assemblies.

7. Face Cover

Extrusions that cover the pressure plate and anchoring components.

8. Face Cover Splice

Formed angles used as a backer for the sealing of the joint between two face covers.

9. Medallion

Circular attachment component used to prevent separation between the end outrigger and the first ThermaShade unit.

10. Pressure Plate Assembly

Aluminum extrusion combined with gaskets and thermal isolator used to seal and retain the glass in a curtain wall system.

11. Anchor Clip

Prefabricated part to attach ThermaShade units to curtain wall system.
12. Mitered Cover

Optional cover attachment.

After certified combined load data indicated below has been obtained, it should be used to determine if project qualifies for use of pre-engineered ThermaShade ${ }^{\oplus}$. A copy of this document must be maintained in your files.

NOTE: Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced in ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead - see chart above - load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

PROJECT: \qquad
LOCATION: \qquad
COMBINED LOAD: \qquad
ENGINEER OF RECORD: \qquad
SIGNATURE \qquad
DATE: \qquad

Chart A
ALLOWABLE UNIFORM COMBINED LOAD FOR THERMASHADE ATTACHED TO E9-1215 MULLION

ALLOWABLE COMBINED LOAD (PSF)

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.81
24 Inch	60 PSF	0.86
24 Inch	40 PSF	0.90
24 Inch	20 PSF	0.95
30 Inch	80 PSF	0.73
30 Inch	60 PSF	0.82
30 Inch	40 PSF	0.85
30 Inch	20 PSF	0.92
36 Inch	80 PSF	0.64
36 Inch	60 PSF	0.71
36 Inch	40 PSF	0.80
36 Inch	$20 ~ P S F ~$	0.89

E9-1215 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing $=5^{\prime}$
Desired Outrigger Projection = 30"
Vertical Span = 15.75'
Wind Load = 20 psf

STEP 1

OBTAIN COMBINED LOAD

*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING: \qquad
(Draw horizontal line at Mullion Spacing. Example: 5')
DESIRED OUTRIGGER PROJECTION: \qquad (Example: 30")

Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.85)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 5'/20psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 15.75')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
15.75 ' (Vertical Span) $\times 0.85$ (Reduction Factor) $=13.39^{\prime}$. Since 15.75 ' is greater than 13.39', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A

 ALLOWABLE UNIFORM COMBINEDLOAD FOR THERMASHADE
ATTACHED TO E9-1225 MULLION

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.79
24 Inch	60 PSF	0.86
24 Inch	40 PSF	0.89
24 Inch	20 PSF	0.94
30 Inch	80 PSF	0.68
30 Inch	60 PSF	0.75
30 Inch	40 PSF	0.83
30 Inch	20 PSF	0.92
36 Inch	80 PSF	0.58
36 Inch	60 PSF	0.66
36 Inch	40 PSF	0.76
36 Inch	20 PSF	0.88

E9-1225 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing $=5^{\prime}$
Desired Outrigger Projection = 30"
Vertical Span = 14.4'
Wind Load $=20$ psf

STEP 1

OBTAIN COMBINED LOAD

*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 5')
DESIRED OUTRIGGER PROJECTION: \qquad
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.83)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 5'/20psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 14.4')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
14.4' (Vertical Span) X 0.83 (Reduction Factor) $=11.95^{\prime}$. Since 14.4' is greater than 11.95', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.76
24 Inch	60 PSF	0.82
24 Inch	40 PSF	0.87
24 Inch	20 PSF	0.94
30 Inch	80 PSF	0.65
30 Inch	60 PSF	0.72
30 Inch	40 PSF	0.81
30 Inch	20 PSF	0.90
36 Inch	80 PSF	0.54
36 Inch	60 PSF	0.62
36 Inch	40 PSF	0.73
36 Inch	$20 ~ P S F ~$	0.86

E9-1246 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing = 5'
Desired Outrigger Projection = 30"
Vertical Span = 13.6'
Wind Load $=20$ psf

STEP 1

OBTAIN COMBINED LOAD
*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 5')
DESIRED OUTRIGGER PROJECTION: \qquad
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.

REDUCTION FACTOR:

\qquad (example: 0.81)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 5'/20psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 13.6')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
13.6^{\prime} (Vertical Span) $\times 0.81$ (Reduction Factor) $=11.02$ '. Since 13.6^{\prime} is greater than 11.02', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A
ALLOWABLE UNIFORM COMBINED LOAD FOR THERMASHADE ATTACHED TO E9-3601 \& 3602 MULLION

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.80
24 Inch	60 PSF	0.85
24 Inch	40 PSF	0.90
24 Inch	20 PSF	0.95
30 Inch	80 PSF	0.69
30 Inch	60 PSF	0.77
30 Inch	40 PSF	0.84
30 Inch	20 PSF	0.92
36 Inch	80 PSF	0.57
36 Inch	60 PSF	0.67
36 Inch	40 PSF	0.78
36 Inch	20 PSF	0.89

E9-3601/E9-3602
(Mullion Clips or Horizontals Placed Every 36") WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing = 5^{\prime}
Desired Outrigger Projection $=30 "$
Vertical Span = 15.6'
Wind Load $=20$ psf

STEP 1

OBTAIN COMBINED LOAD

*COMBINED LOAD:

\qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD: \qquad
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 5')
DESIRED OUTRIGGER PROJECTION: \qquad
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.84)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 5'/20psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 15.6")
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
15.6^{\prime} (Vertical Span) $\times 0.84$ (Reduction Factor) $=13.10$ '. Since 15.6^{\prime} is greater than 13.10', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.82
24 Inch	60 PSF	0.86
24 Inch	40 PSF	0.91
24 Inch	20 PSF	0.95
30 Inch	80 PSF	0.73
30 Inch	60 PSF	0.79
30 Inch	40 PSF	0.86
30 Inch	20 PSF	0.93
36 Inch	80 PSF	0.63
36 Inch	60 PSF	0.71
36 Inch	40 PSF	0.80
36 Inch	20 PSF	0.90

E9-3101 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing = 5'
Desired Outrigger Projection $=24 "$
Vertical Span = 11.1'
Wind Load $=60$ psf

STEP 1

OBTAIN COMBINED LOAD
*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD: \qquad
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 5')
DESIRED OUTRIGGER PROJECTION: \qquad
(Example: 24")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 24 " Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.

REDUCTION FACTOR:

\qquad (example: 0.91)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 5'/60psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 11.1')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
11.1' (Vertical Span) $\times 0.91$ (Reduction Factor) $=10.10^{\prime}$. Since 11.1' is greater than 10.10', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A ALLOWABLE UNIFORM COMBINED
LOAD FOR THERMASHADE
ATTACHED TO E9-3103 MULLION

ALLOWABLE COMBINED LOAD (PSF)

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.82
24 Inch	60 PSF	0.86
24 Inch	40 PSF	0.91
24 Inch	20 PSF	0.95
30 Inch	80 PSF	0.73
30 Inch	60 PSF	0.79
30 Inch	40 PSF	0.85
30 Inch	20 PSF	0.93
36 Inch	80 PSF	0.63
36 Inch	60 PSF	0.71
36 Inch	40 PSF	0.80
36 Inch	20 PSF	0.89

E9-3103
WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing = 5^{\prime}
Desired Outrigger Projection $=24 "$
Vertical Span = 11'
Wind Load $=60$ psf

STEP 1

OBTAIN COMBINED LOAD

*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD: \qquad
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 5')
DESIRED OUTRIGGER PROJECTION: \qquad
(Example: 24")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 24 " Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.91)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 5'/60psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 11')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
11 ' (Vertical Span) $\times 0.91$ (Reduction Factor) $=10.01$ '. Since 11' is greater than 10.01', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A

ALLOWABLE UNIFORM COMBINED LOAD FOR THERMASHADE ATTACHED TO E9-3107 MULLION

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.84
24 Inch	60 PSF	0.87
24 Inch	40 PSF	0.91
24 Inch	30 PSF	0.93
30 Inch	80 PSF	0.77
30 Inch	60 PSF	0.81
30 Inch	40 PSF	0.87
30 Inch	30 PSF	0.90
36 Inch	80 PSF	0.70
36 Inch	60 PSF	0.75
36 Inch	40 PSF	0.82
36 Inch	30 PSF	0.86

E9-3107
 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing $=5^{\prime}$
Desired Outrigger Projection $=24 "$
Vertical Span = 13.9'
Wind Load $=25$ psf

STEP 1

OBTAIN COMBINED LOAD
*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 5')
DESIRED OUTRIGGER PROJECTION: \qquad (Example: 24")

Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 24" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: .91)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 5'/25psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 13.9') -Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
13.9^{\prime} (Vertical Span) X .91 (Reduction Factor) $=12.6^{\prime}$. Since 13.9' is greater than 12.6^{\prime}, the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.84
24 Inch	60 PSF	0.87
24 Inch	40 PSF	0.91
24 Inch	30 PSF	0.93
30 Inch	80 PSF	0.77
30 Inch	60 PSF	0.81
30 Inch	40 PSF	0.87
30 Inch	30 PSF	0.90
36 Inch	80 PSF	0.70
36 Inch	60 PSF	0.75
36 Inch	40 PSF	0.82
36 Inch	30 PSF	0.86

E9-3111
WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40 \mathrm{psf}$
Mullion Spacing $=5^{\prime}$
Desired Outrigger Projection $=24 "$
Vertical Span = 14'
Wind Load $=25$ psf

STEP 1

OBTAIN COMBINED LOAD

*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 5')
DESIRED OUTRIGGER PROJECTION: \qquad
(Example: 24")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 24 " Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: .91)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 5'/25psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 14')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
14' (Vertical Span) X . 91 (Reduction Factor) = 12.7'. Since 14' is greater than 12.7^{\prime}, the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.89
24 Inch	60 PSF	0.92
24 Inch	40 PSF	0.94
24 Inch	30 PSF	0.96
30 Inch	80 PSF	0.84
30 Inch	60 PSF	0.88
30 Inch	40 PSF	0.91
30 Inch	30 PSF	0.93
36 Inch	80 PSF	0.79
36 Inch	60 PSF	0.83
36 Inch	40 PSF	0.88
36 Inch	30 PSF	0.91

E9-3182 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing = 5^{\prime}
Desired Outrigger Projection $=24{ }^{\prime \prime}$
Vertical Span = 15.5'
Wind Load $=60 \mathrm{psf}$

STEP 1

OBTAIN COMBINED LOAD

*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection).
*COMBINED LOAD: \qquad
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING: \qquad
(Draw horizontal line at Mullion Spacing. Example: 5')
DESIRED OUTRIGGER PROJECTION:
(Example: 24")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 24 " Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.

REDUCTION FACTOR:

\qquad (example: .94)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 5'/60psf)
60 PSF -Draw a horizontal line at the intersecting point and determine the Vertical
70 PSF Span (before applying the Reduction Factor). (Example: 11')
80 PSF -Multiply the Vertical Span by the Reduction Factor to determine if the 90 PSF reduced span is acceptable. For example:
100 PSF
110 PSF
120 PSF 130 PSF
15.5' (Vertical Span) X . 94 (Reduction Factor) = 14.6'. Since 15.5' is greater than 14.6', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.89
24 Inch	60 PSF	0.92
24 Inch	40 PSF	0.94
24 Inch	30 PSF	0.96
30 Inch	80 PSF	0.84
30 Inch	60 PSF	0.88
30 Inch	40 PSF	0.91
30 Inch	30 PSF	0.93
36 Inch	80 PSF	0.79
36 Inch	60 PSF	0.83
36 Inch	40 PSF	0.88
36 Inch	30 PSF	0.91

E9-3183 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing $=5^{\prime}$
Desired Outrigger Projection $=24^{\prime \prime}$
Vertical Span $=15.6^{\prime}$
Wind Load $=60 \mathrm{psf}$

STEP 1

OBTAIN COMBINED LOAD

*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 5')
DESIRED OUTRIGGER PROJECTION: \qquad
(Example: 24")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 24 " Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.

REDUCTION FACTOR:

\qquad (example: .94)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 5'/60psf)
60 PSF
70 PSF
80 PSF
90 PSF
100 PSF
120 PSF 130 PSF
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 11') -Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
15.6' (Vertical Span) X . 94 (Reduction Factor) $=14.7^{\prime}$. Since 15.6' is greater than 14.7', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A
ALLOWABLE UNIFORM COMBINED LOAD FOR THERMASHADE ATTACHED TO E9-1013/E9-1012

ALLOWABLE COMBINED LOAD (PSF)

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.64
24 Inch	60 PSF	0.70
24 Inch	40 PSF	0.78
24 Inch	30 PSF	0.82
30 Inch	80 PSF	0.53
30 Inch	60 PSF	0.60
30 Inch	40 PSF	0.69
30 Inch	30 PSF	0.75
36 Inch	80 PSF	0.38
36 Inch	60 PSF	0.44
36 Inch	40 PSF	0.61
36 Inch	30 PSF	0.67

E9-1013 / E9-1012 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing = 3'
Desired Outrigger Projection $=30 "$
Vertical Span $=12.2^{\prime}$
Wind Load $=15 \mathrm{psf}$

STEP 1

OBTAIN COMBINED LOAD

*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 3')
DESIRED OUTRIGGER PROJECTION:
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.69)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 3'/15psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 12.2')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
12.2^{\prime} (Vertical Span) $\times 0.69$ (Reduction Factor) $=8.42^{\prime}$. Since 12.2' is greater than 8.42', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A

ALLOWABLE UNIFORM COMBINED

 LOAD FOR THERMASHADE ATTACHED TO E9-1013/E9-1012/E1-3847

ALLOWABLE COMBINED LOAD (PSF)

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.81
24 Inch	60 PSF	0.85
24 Inch	40 PSF	0.90
24 Inch	30 PSF	0.92
30 Inch	80 PSF	0.73
30 Inch	60 PSF	0.78
30 Inch	40 PSF	0.85
30 Inch	30 PSF	0.88
36 Inch	80 PSF	0.57
36 Inch	60 PSF	0.63
36 Inch	40 PSF	0.79
36 Inch	30 PSF	0.84

E9-1013 / E9-1012 / E1-3847 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing = 3'
Desired Outrigger Projection $=30^{\prime \prime}$
Vertical Span $=13.5^{\prime}$
Wind Load $=30$ psf

STEP 1

OBTAIN COMBINED LOAD
*COMBINED LOAD: \qquad (example: 40 psf$)$
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD: \qquad
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 3')
DESIRED OUTRIGGER PROJECTION:
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.85)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: $3^{\prime} / 30 \mathrm{psf}$)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 13.5')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
12.2^{\prime} (Vertical Span) $\times 0.85$ (Reduction Factor) $=11.48$ '. Since 13.5^{\prime} is greater than 11.48', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A
ALLOWABLE UNIFORM COMBINED LOAD FOR THERMASHADE ATTACHED TO E9-1011/E9-1012

ALLOWABLE COMBINED LOAD (PSF)

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.63
24 Inch	60 PSF	0.69
24 Inch	40 PSF	0.77
24 Inch	30 PSF	0.82
30 Inch	80 PSF	0.52
30 Inch	60 PSF	0.59
30 Inch	40 PSF	0.69
30 Inch	30 PSF	0.74
36 Inch	80 PSF	0.37
36 Inch	60 PSF	0.44
36 Inch	40 PSF	0.60
36 Inch	30 PSF	0.67

E9-1011 / E9-1012 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing = 3'
Desired Outrigger Projection $=30 "$
Vertical Span $=11.8^{\prime}$
Wind Load $=15 \mathrm{psf}$

STEP 1

OBTAIN COMBINED LOAD

*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 3')
DESIRED OUTRIGGER PROJECTION:
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.69)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 3'/15psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 11.8')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
11.8' (Vertical Span) $\times 0.69$ (Reduction Factor) $=7.9^{\prime}$. Since 11.8' is greater than 7.9', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A
ALLOWABLE UNIFORM COMBINED LOAD FOR THERMASHADE ATTACHED TO E9-1011/E9-1012/E1-3847

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.81
24 Inch	60 PSF	0.85
24 Inch	40 PSF	0.90
24 Inch	30 PSF	0.92
30 Inch	80 PSF	0.73
30 Inch	60 PSF	0.78
30 Inch	40 PSF	0.85
30 Inch	30 PSF	0.88
36 Inch	80 PSF	0.57
36 Inch	60 PSF	0.63
36 Inch	40 PSF	0.79
36 Inch	$30 ~ P S F$	0.84

E9-1011 / E9-1012 / E1-3847 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing $=3$
Desired Outrigger Projection $=30^{\prime \prime}$
Vertical Span $=13.6^{\prime}$
Wind Load = 15 psf

STEP 1

OBTAIN COMBINED LOAD
*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 3')
DESIRED OUTRIGGER PROJECTION:
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.85)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: $3^{\prime} / 30 \mathrm{psf}$)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 13.6')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
13.6^{\prime} (Vertical Span) $\times 0.85$ (Reduction Factor) $=11.6^{\prime}$. Since 13.6' is greater than 11.6^{\prime}, the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A
ALLOWABLE UNIFORM COMBINED LOAD FOR THERMASHADE ATTACHED TO E9-1075

ALLOWABLE COMBINED LOAD (PSF)

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.64
24 Inch	60 PSF	0.70
24 Inch	40 PSF	0.78
24 Inch	30 PSF	0.82
30 Inch	80 PSF	0.53
30 Inch	60 PSF	0.60
30 Inch	40 PSF	0.69
30 Inch	30 PSF	0.75
36 Inch	80 PSF	0.38
36 Inch	60 PSF	0.44
36 Inch	40 PSF	0.60
36 Inch	30 PSF	0.67

E9-1075 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
 Use the following job requirements as an example:
 Combined Load $=40$ psf
 Mullion Spacing = 3'
 Desired Outrigger Projection $=30 "$
 Vertical Span $=12.5^{\prime}$
 Wind Load = 15 psf
 STEP 1
 OBTAIN COMBINED LOAD
 *COMBINED LOAD:
 \qquad (example: 40 psf)

*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 3')
DESIRED OUTRIGGER PROJECTION:
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.69)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: $3^{\prime} / 15 \mathrm{psf}$)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 12.5')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
12.5^{\prime} (Vertical Span) $\times 0.69$ (Reduction Factor) $=8.63^{\prime}$. Since 12.5^{\prime} is greater than 8.63', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A
ALLOWABLE UNIFORM COMBINED LOAD FOR THERMASHADE ATTACHED TO E9-1075/E1-3847

ALLOWABLE COMBINED LOAD (PSF)

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.82
24 Inch	60 PSF	0.86
24 Inch	40 PSF	0.90
24 Inch	30 PSF	0.92
30 Inch	80 PSF	0.74
30 Inch	60 PSF	0.79
30 Inch	40 PSF	0.87
30 Inch	30 PSF	0.89
36 Inch	80 PSF	0.58
36 Inch	60 PSF	0.64
36 Inch	40 PSF	0.80
36 Inch	30 PSF	0.84

E9-1075 / E1-3847 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing $=3^{\prime}$
Desired Outrigger Projection $=301$
Vertical Span $=14.7^{\prime}$
Wind Load $=30$ psf

STEP 1

OBTAIN COMBINED LOAD
*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 3')
DESIRED OUTRIGGER PROJECTION:
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.87)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: $3^{\prime} / 30 \mathrm{psf}$)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 14.7')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
14.7^{\prime} (Vertical Span) $\times 0.87$ (Reduction Factor) $=12.8^{\prime}$. Since 14.7^{\prime} is greater than 12.8 ', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A

ALLOWABLE UNIFORM COMBINED
 LOAD FOR THERMASHADE
 ATTACHED TO BE9-2553/BE9-2552

ALLOWABLE COMBINED LOAD (PSF)

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.60
24 Inch	60 PSF	0.66
24 Inch	40 PSF	0.75
24 Inch	30 PSF	0.80
30 Inch	80 PSF	0.49
30 Inch	60 PSF	0.56
30 Inch	40 PSF	0.66
30 Inch	30 PSF	0.72
36 Inch	80 PSF	0.40
36 Inch	60 PSF	0.47
36 Inch	40 PSF	0.57
36 Inch	30 PSF	0.64

BE9-2553 / BE9-2552 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
 Use the following job requirements as an example:
 Combined Load $=40$ psf
 Mullion Spacing $=3^{\prime}$
 Desired Outrigger Projection $=30$ "
 Vertical Span $=11.3^{\prime}$
 Wind Load $=15$ psf
 STEP 1
 OBTAIN COMBINED LOAD
 *COMBINED LOAD:
 \qquad (example: 40 psf)

*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 3')
DESIRED OUTRIGGER PROJECTION:
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.66)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired
Wind Load curve. (Example: 3'/15psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 11.3')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
11.3^{\prime} (Vertical Span) $\times 0.66$ (Reduction Factor) $=7.46$ '. Since 11.3' is greater than 7.46', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A
ALLOWABLE UNIFORM COMBINED LOAD FOR THERMASHADE ATTACHED TO BE9-2551/BE9-2552

ALLOWABLE COMBINED LOAD (PSF)

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.60
24 Inch	60 PSF	0.66
24 Inch	40 PSF	0.75
24 Inch	30 PSF	0.80
30 Inch	80 PSF	0.49
30 Inch	60 PSF	0.56
30 Inch	40 PSF	0.66
30 Inch	30 PSF	0.72
36 Inch	80 PSF	0.35
36 Inch	60 PSF	0.41
36 Inch	40 PSF	0.57
36 Inch	30 PSF	0.64

BE9-2551 / BE9-2552 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing = 3'
Desired Outrigger Projection $=30^{\prime \prime}$
Vertical Span $=11.4^{\prime}$
Wind Load = 15 psf

STEP 1

OBTAIN COMBINED LOAD
*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 3')
DESIRED OUTRIGGER PROJECTION:
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.66)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: $3^{\prime} / 15$ psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 11.4')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
11.4' (Vertical Span) $\times 0.66$ (Reduction Factor) $=7.5^{\prime}$. Since 11.4' is greater than 7.5', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A
ALLOWABLE UNIFORM COMBINED LOAD FOR THERMASHADE ATTACHED TO BE9-2555

ALLOWABLE COMBINED LOAD (PSF)

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.61
24 Inch	60 PSF	0.68
24 Inch	40 PSF	0.76
24 Inch	30 PSF	0.81
30 Inch	80 PSF	0.50
30 Inch	60 PSF	0.57
30 Inch	40 PSF	0.71
30 Inch	30 PSF	0.73
36 Inch	80 PSF	0.36
36 Inch	60 PSF	0.42
36 Inch	40 PSF	0.58
36 Inch	30 PSF	0.65

BE9-2555 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing = 3'
Desired Outrigger Projection $=30 "$
Vertical Span = 12.3'
Wind Load = 15 psf

STEP 1

OBTAIN COMBINED LOAD
*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING: \qquad
(Draw horizontal line at Mullion Spacing. Example: 3')
DESIRED OUTRIGGER PROJECTION:
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.71)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: $3^{\prime} / 15 \mathrm{psf}$)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 12.3') -Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
12.3^{\prime} (Vertical Span) $\times 0.71$ (Reduction Factor) $=8.7^{\prime}$. Since 12.3' is greater than 8.7', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A
ALLOWABLE UNIFORM COMBINED LOAD FOR THERMASHADE ATTACHED TO BE9-2601/BE9-2605

ALLOWABLE COMBINED LOAD (PSF)

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.59
24 Inch	60 PSF	0.65
24 Inch	40 PSF	0.74
24 Inch	30 PSF	0.79
30 Inch	80 PSF	0.48
30 Inch	60 PSF	0.55
30 Inch	40 PSF	0.65
30 Inch	30 PSF	0.71
36 Inch	80 PSF	0.39
36 Inch	60 PSF	0.46
36 Inch	40 PSF	0.56
36 Inch	30 PSF	0.63

BE9-2601 / BE9-2605 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing = 5'
Desired Outrigger Projection $=30$ "
Vertical Span $=9.833^{\prime}$
Wind Load = 15 psf

STEP 1
 OBTAIN COMBINED LOAD

*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 5')
DESIRED OUTRIGGER PROJECTION:
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.65)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 5'/15psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 9.833') -Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
9.833^{\prime} (Vertical Span) $\times 0.65$ (Reduction Factor) $=6.39$. Since 9.833^{\prime} is greater than 6.39', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A

ALLOWABLE UNIFORM COMBINED LOAD FOR THERMASHADE ATTACHED TO BE9-2606/BE9-2605

ALLOWABLE COMBINED LOAD (PSF)

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.65
24 Inch	60 PSF	0.71
24 Inch	40 PSF	0.79
24 Inch	30 PSF	0.83
30 Inch	80 PSF	0.54
30 Inch	60 PSF	0.61
30 Inch	40 PSF	0.70
30 Inch	30 PSF	0.76
36 Inch	80 PSF	0.45
36 Inch	60 PSF	0.52
36 Inch	40 PSF	0.62
36 Inch	30 PSF	0.69

BE9-2606 / BE9-2605 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
 Use the following job requirements as an example:
 Combined Load $=40$ psf
 Mullion Spacing = 5'
 Desired Outrigger Projection $=30 "$
 Vertical Span $=11.25^{\prime}$
 Wind Load $=15$ psf
 STEP 1
 OBTAIN COMBINED LOAD
 *COMBINED LOAD:
 \qquad (example: 40 psf)

*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 5')
DESIRED OUTRIGGER PROJECTION:
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.70)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: $5^{\prime} / 15$ psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 11.25')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
11.25^{\prime} (Vertical Span) $\times 0.70$ (Reduction Factor) $=7.88^{\prime}$. Since 11.25 ' is greater than 7.88 ', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A
ALLOWABLE UNIFORM COMBINED LOAD FOR THERMASHADE ATTACHED TO BE9-2602/BE9-2605

ALLOWABLE COMBINED LOAD (PSF)

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.58
24 Inch	60 PSF	0.64
24 Inch	40 PSF	0.73
24 Inch	30 PSF	0.78
30 Inch	80 PSF	0.46
30 Inch	60 PSF	0.54
30 Inch	40 PSF	0.63
30 Inch	30 PSF	0.70
36 Inch	80 PSF	0.38
36 Inch	60 PSF	0.45
36 Inch	40 PSF	0.55
36 Inch	30 PSF	0.62

BE9-2602 / BE9-2605 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing = 5'
Desired Outrigger Projection $=301$
Vertical Span $=9.40^{\prime}$
Wind Load $=15$ psf

STEP 1

OBTAIN COMBINED LOAD
*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 5')
DESIRED OUTRIGGER PROJECTION:
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30" Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.63)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 5 '/15psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 9.40')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
9.40^{\prime} (Vertical Span) $\times 0.63$ (Reduction Factor) $=5.92^{\prime}$. Since 9.40' is greater than 5.92', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.81
24 Inch	60 PSF	0.85
24 Inch	40 PSF	0.90
24 Inch	30 PSF	0.92
30 Inch	80 PSF	0.73
30 Inch	60 PSF	0.78
30 Inch	40 PSF	0.85
30 Inch	30 PSF	0.88
36 Inch	80 PSF	0.57
36 Inch	60 PSF	0.63
36 Inch	40 PSF	0.79
36 Inch	30 PSF	0.84

E9-0654 / E9-0655 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing = 5^{\prime}
Desired Outrigger Projection $=30 "$
Vertical Span $=11.25^{\prime}$
Wind Load $=40$ psf

STEP 1

OBTAIN COMBINED LOAD
*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection).
*COMBINED LOAD: \qquad
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING: \qquad
(Draw horizontal line at Mullion Spacing. Example: 5')
DESIRED OUTRIGGER PROJECTION:
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30 " Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.
REDUCTION FACTOR: \qquad (example: 0.85)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 5'/40psf)
-Draw a horizontal line at the intersecting point and determine the Vertical Span (before applying the Reduction Factor). (Example: 11.25') -Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
11.25^{\prime} (Vertical Span) $\times 0.85$ (Reduction Factor) $=9.56$ '. Since 11.25' is greater than 9.56 ', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

Chart A
ALLOWABLE UNIFORM COMBINED LOAD FOR THERMASHADE ATTACHED TO BE9-0684/BE9-0655

Chart B

ThermaShade Length	Combined Load	Reduction Factor
24 Inch	80 PSF	0.81
24 Inch	60 PSF	0.85
24 Inch	40 PSF	0.90
24 Inch	30 PSF	0.92
30 Inch	80 PSF	0.73
30 Inch	60 PSF	0.78
30 Inch	40 PSF	0.85
30 Inch	30 PSF	0.88
36 Inch	80 PSF	0.57
36 Inch	60 PSF	0.63
36 Inch	40 PSF	0.79
36 Inch	30 PSF	0.84

> BE9-0684 / E9-0655 WITH HORIZONTALS WITHOUT THERMASHADES

Use the following charts to validate outrigger projection, mullion spacing, and vertical span. The following worksheet is for one standard ThermaShade per mullion.
Use the following job requirements as an example:
Combined Load $=40$ psf
Mullion Spacing $=5^{\prime}$
Desired Outrigger Projection $=30 "$
Vertical Span $=11.1^{\prime}$
Wind Load $=40 \mathrm{psf}$

STEP 1

OBTAIN COMBINED LOAD

*COMBINED LOAD: \qquad (example: 40 psf)
*Allowable combined load (in PSF) as required by the code of jurisdiction and/or code referenced ASCE standard (Minimum Design Loads for Buildings and Other Structures) and determined by the building engineer of record (reference signed document) consisting of dead load plus other load effects such as snow, snow surcharges and drifts, ice, wind, live load roof, or others.

STEP 2

VALIDATE OUTRIGGER PROJECTION

Using Chart A, validate the desired sunshade depth (outrigger projection). *COMBINED LOAD:
(Draw a vertical line at the Combined Load. Example: 40 psf)
VERTICAL MULLION SPACING:
(Draw horizontal line at Mullion Spacing. Example: 5')
DESIRED OUTRIGGER PROJECTION: \qquad
(Example: 30")
Intersecting point must be below the curve of the Outrigger Projection. In the example shown, the intersecting point is below the 30 " Outrigger Projection curve, therefore it is validated.

STEP 3

DETERMINE REDUCTION FACTOR

Determine Wind Load reduction factor from Chart B.

REDUCTION FACTOR:

\qquad (example: 0.85)
Note: Interpolate the reduction factor for combined loads not shown.

STEP 4

APPLY REDUCTION FACTOR AND VALIDATE THE DESIRED VERTICAL SPAN

Using the standard Wind Load Chart to the left, apply the Reduction Factor to the Vertical Span.
-Draw a vertical line at the Mullion Spacing until it intersects the desired Wind Load curve. (Example: 5'/40psf)
-Draw a horizontal line at the intersecting point and determine the Vertical
Span (before applying the Reduction Factor). (Example: 11.1')
-Multiply the Vertical Span by the Reduction Factor to determine if the reduced span is acceptable. For example:
11.1' (Vertical Span) $\times 0.85$ (Reduction Factor) $=9.44^{\prime}$. Since 11.1' is greater than 9.44 ', the desired Vertical Span has been validated.

If any of the data calculated above does not validate the desired job requirements, consider reducing the outrigger projection, mullion spacing or vertical span. Solutions may also be available to meet your specific needs by contacting our engineering group at 1-866-955-2732.

SHEAR AND MOMENT COMBINED LOAD CHARTS FOR WALL MOUNT ATTACHMENT*

ALLOWABLE COMBINED LOAD (PSF)

30" THERMASHADE
MAX. END REACTIONS-SHEAR AT THE ATTACHMENT POINT

ALLOWABLE COMBINED LOAD (PSF)

> 36" THERMASHADE
> MAX. END REACTIONS-SHEAR AT THE ATTACHMENT POINT
> ALLOWABLE COMBINED LOAD (PSF)

24" THERMASHADE
MAX. END REACTIONS-MOMENT AT THE ATTACHMENT POINT

ALLOWABLE COMBINED LOAD (PSF)

30" THERMASHADE
MAX. END REACTIONS-MOMENT AT THE ATTACHMENT POINT

ALLOWABLE COMBINED LOAD (PSF)

36" THERMASHADE
MAX. END REACTIONS-MOMENT AT THE ATTACHMENT POINT

ALLOWABLE COMBINED LOAD (PSF)

THERMASHADE FOR STOREFRONT LOCATION OPTIONS

TYPE A

- Outrigger and mullion anchor are located below the head.
- Requires standard "Type A" mullion anchors and covers.
- Can utilize Luminance ${ }^{\oplus}$ light shelf system.

TYPE B

- Outrigger and mullion anchor are located at the extreme head location, requiring "Type B" anchor and covers.

COMBINED LOAD CHARTS THERMASHADE FOR STOREFRONT

YES 45 FI

SCREW SPLINE WITH CONTINUOUS STEEL REINFORCEMENT

COMBINED LOAD CHARTS THERMASHADE FOR STOREFRONT

COMBINED LOAD CHARTS THERMASHADE FOR STOREFRONT

YES 45 TU

SHEAR BLOCK WITH MULLION REINFORCEMENT AND STEEL BAR REINFORCEMENT

ALLOWABLE COMBINED LOAD (PSF)

ALLOWABLE COMBINED LOAD (PSF)

COMBINED LOAD CHARTS THERMASHADE FOR STOREFRONT

YES 45 XT
SCREW SPLINE WITH MULLION REINFORCEMENT AND STEEL BAR REINFORCEMENT

ALLOWABLE COMBINED LOAD (PSF)

ALLOWABLE COMBINED LOAD (PSF)

COMBINED LOAD CHARTS THERMASHADE FOR STOREFRONT

(YHS 50 TU

